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Allltnct-A stress S is said to be conjugate to a strain measure E if the inner product S· t is the
power per unit volume. The logarithmic strain In U. with U the right stretch tensor. has been
considered an interesting strain measure because of the relationship of ill material time derivative
(In U)' with the stretching tensor D. In a previous article (Int. J. Solids Structuru 12, 1019-1032
(1986» a formula for (In U)' was obtained in direct notation for the <:ases where the principal
stretches are repeated, as well as for the <:ase where they are all distinct. Here the formula for (In Ur
and the definition of conjugate stress are used to derive an explicit, properly invariant expression
for the stress conjugate to the logarithmic strain.

1.1NTRODUCTION

The concept of conjugate stress and strain was introduced by Hill[l] as a tool with which
to explore constitutive inequalities in solid mechanics. A stress S and a strain measure E
are said to be a conjugate pair ifS· Erepresents the power per unit volume, so a necessary
and sufficient condition for Sand E to be a conjugate pair is that they satisfy

S·t = (det U)T·D.

Here U, T and D represent the right stretch, Cauchy stress, and stretching tensors, respec
tively.

The logarithmic strain In U and the related In V, with V the left stretch, have been
considered useful strain measures, and have enjoyed particular attention because of the
relationships of their material time derivatives to the stretching tensor D (e.g. see Refs
[2-5)).

The problem of finding the stress conjugate to the strain In U has been addressed and
partially resolved by Hill[3, 6]. He obtained the components of this stress with respect to
the principal axes ofU for the case where the principal values ofU are distinct.

In this paper we find explicit fonnulas for the stress conjugate to In U which are
expressed in direct notation and hold for repeated as well as all distinct principal stretches.
The strain measure In V has no conjugate stress (see Ref. [7] and the discussion closing
Subsection 3.3).

Section 2 contains a briefsummary of the kinematical results which will be used in the
remainder of the paper. The notion of conjugate stress and strain is precisely defined in
that section as well, and we discuss the conditions under which, given a strain measure, the
corresponding conjugate stress is uniquely determined.

In Section 3 the stress conjugate to the logarithmic strain is obtained. The method used
depends on finding a fonnula for D in terms of In U. Such a fonnula is derived for the case
oftwo distinct principal stretches in Subsection 3.1, and for three distinct principal stretches
in Subsection 3.2. The stress conjugate to In U is found by substitution of these expressions
into (det U)T· D; this is carried out in Subsection 3.3.

A variant ofthe basicprocedure used here to find the stress conjugate to the logarithmic
strain can be successfully applied to the problem ofdetermining the conjugate stress to any
strain measure which can be written in the fonn

1645



1646 A. HOGER

3

H = L h(Aj)ej ® ej
i-=-l

with h a scalar valued strictly monotone function, and Ai and ej a principal stretch and
associated principal axis. This result is included in an article on general isotropic strain
measures[8].

2. PRELlMINARIESt

LetF denote the deformation gradient at a point ofa deforming body. The requirement
that det F > 0 allows the unique polar decompositions

F=RU=VR (1)

where U and V, the right and left stretch tensors, respectively, are positive definite symmetric,
and the rotation R is proper orthogonal.

It is assumed that F is a continuously differentiable function of time. The spacial
velocity gradient

L=FF-) (2)t

has as its symmetric part the stretching tensor D.
The eigenvalues ofU, which are also those ofV, are termed the principal stretches and

denoted by AI> A2 and A3' The principal invariants ofU and V are

I = A) + A2 + A3

II = A)A2 + A.2A3 + A.3A.1

III = AIA2),3'

(3)

The Cayley-Hamilton theorem states that every tensor satisfies its own characteristic
equation; e.g. U meets

By the spectral theorem U has the representation

3

U= l:Ajej@ej
i-I

(4)

(5)

where {el>e2,e3} is an orthonormal basis of eigenvectors of U with the eigenvector, or
principal axis, e/ corresponding to principal stretch Ai' The principal axes of V, {el}' are
related to the principal axes ofU through

The tensor logarithm maps positive definite symmetric tensors into symmetric tensors.
The logarithmic strain tensor In U is defined as

3

In U = Lin A;el@e/.
i-I

(6)

Expressions for the material time derivative of the logarithmic strain were derived in
Ref. [5]; the results of interest here are displayed below.

t The notation and terminology of Ref. [9] are followed.
t A superposed dot will be used to indicate the material time derivative.
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Suppose that there are three distinct principal stretches, i.e. AI '" A2 '" A3 '" AI' Then

(In U)" == RT[4>tD + eIl2(DV + VD)+eIl3(VzD+DV2)+eIl4VDV

+eIls(VzDV + VDVZ)+ eIlr,VzDVZ]R (7)

wheret

eIl t = 1-2Illells- IIIIeIl6

eIl2 = IIeIl s+!(1II-Il1)eIl6

eIl4 == -24>3 -2IeIls-(12-I1)(J)6'

The remaining coefficients are defined as follows:

(8)

ells = [I Il~IlIJ t ({ -I1I2+2(Pt[I II-IIl]-Iljrl-2,ptlIII-,p;I}H/+ljr/IG/) (9)t

eIl6 = I II~III;~ H(I II-III)I+IIz-2ljr;(I II-/l1) + (ljr;-2,p;)/I+,plJH;+ljr;G;}

with

,p; = AjAt

ljr; = Aj+At

In A·G.= I

I (A/ - AjHA; - At)

H _ A;-I_(A;-Aj)(G;+Gt)-(A;-At)(G;+Gj)
; - (A,;-A,j)Z(A,;-At)Z

(10)

and i,j, k an even permutation of 1,2,3.
Suppose that there are exactly two distinct principal stretches, say§ AI '" Az =A3 =:Ao·

Then

where

0. = 1+AIA00 3

O 2 == -!(AI +Ao)03

0
3

== 2(Af -A~)-4A.Ao In (AI1Ao)
(AI +Ao)(AI - Ao)3

Suppose that there is one distinct principal stretch, Le. AI = ;'2 == ;'3' Then

(11)

(12)

t These mations are not shown explicitly in Ref. [5]; they can be proved by using the expressions for the 4>/
given there and some tedious algebra.

t The summation COIlvention is not employed; i.e. summation over repeated indices is not implied.
tAll c.:ues where it is assumed that ll" It- As are easily JC!lCI'8,IizecI to A,,, ~ - At, with i, j, k any

permutation of I, 2, 3. The notation .A : - B indicates an equality in which .A is defined by B.
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(13)

For the work at hand, the following formulation of the notion of conjugate stress and
strain will be most useful. Let E be a symmetric tensor valued measure of strain. If there
exists a symmetric tensor S such that

s·t = IIIT'D (14)t

for all motions, then S is the stress conjugate to E. As noted in the introduction, III T' D is
the stress power per unit volume.

Note that, given a particular strain measure E, there can be at most one corresponding
conjugate stress S as long as t, taken over the set of all motions, spans the space of
symmetric tensors. Also, in the present case nothing would be gained by allowing S to be
asymmetric as the left-hand side of eqn (14) is insensitive to the skew part of S.

Not every stress tensor has a conjugate strain associated with it. For example, because
the stretching tensor D is not a material time derivative of a strain -measure, the Cauchy
stress is not part of a conjugate pair (see e.g. Ref. [7] or Ref. [1]). Similarly, there are strains
which do not have a conjugate stress. One such strain measure is the logarithm of the left
stretch, In V, as will be shown at the end of Subsection 3.3.

It will be shown that there exists a unique symmetric stress conjugate to In U, which
we will denote by T(O), and with the aid of eqn (14) an explicit formula will be derived for
that stress.

Before proceeding we note that (In Ur, taken over the set of all motions, spans the
space of symmetric tensors. From eqns (7), (II) and (13) it is evident that (In Ur is an
isotropic function ofD and V, linear in D. In fact, as calculated in Ref. [5]

D ij , i=j

[(In Un) = (15)

where the components are taken with respect to the principal axes of U and V on the left
and right-hand sides, respectively. Since the stretching tensor D, when considered over all
motions, spans the space of symmetric tensors,~ it is clear from eqn (15) that so, also, does
In U.

3. THE STRESS CONJUGATE TO In U

In this section the stress conjugate to In U will be determined by the following
procedure. First, the expressions giving (In U)' in terms of D displayed in Section 2 will be
inverted to give equations for D written in terms of (In U)'. It is necessary that the number
of distinct principal stretches be specified; in the case of one distinct principal stretch the
inversion is immediate, the case where there are exactly two distinct principal stretches is
dealt with in Subsection 3.1, and the case of three distinct principal stretches is addressed
in Subsection 3.2. These expressions for D will then be substituted into lIlT· D to yield
explicit formulas for the stress T(O) conjugate to the logarithmic strain; these are displayed
in Subsection 3.3.

3.1. Two distinct principal stretches
Throughout this subsection it will be assumed that there are exactly two distinct

principal stretches, say

t The inner product of two tensors A and B will be denoted by A' B: = tr. (A7'B). . .
~ It suffices to consider motions of the form x(p, t) = IA(p-po), where A IS an arbitrary constant symmetric

tensor and Po is an arbitrary fixed point; for then D = A.
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(16)

In this case (In U)' is given in terms ofD, V, AI and Ao by eqn (11). Our purpose here is to
obtain an expression for D in terms of (In U)" valid for this case.

For convenience let

then eqn (11) can be written as

P: =R(ln U)'RT (17)

(18)

with the 9, given byeqn (12). With respect to the principal axes of V the components of
Pare

(19)

where i andj range over 1,2,3. With the aid of eqn (12) the term in square brackets is easily
calculated :

9 1+292A,+93Al = I,

2.1. 1Ao In (). II).0)
9 1+ 9 2(A, + A.j ) + 9 3AIA,j = A,2 .1.2 ,

1- 0

9 1+9 2(A,,+A,j) +9 3A"Aj = I,

i=j

(20)

In view of eqn (16), the right-hand side of eqn (20)2 is non-zero; thus eqn (19) may be
inverted to give

Pu, i =j

P Ar-A.~ i#:j').I:I:~
I) 211).0 In ()..;AO)'

PI» j #: j, AI == Aj.

We now seek scalars '1', such that D may be written as

In component form with respect to the principal axes of V, eqn (22) states that

(21)

(22)

(23)

By substituting the values for DIj given byeqns (21) into the left-hand side of eqn (23), we
obtain

'PI +2'1'2).1 +'I'3).t -I

'P1+2'1'2AO+ 'I'3).~ =1

Ar+).~
'1'. +'I'2().. +10)+'1'3)..10 -2)..).0 In (1"1

0
)'

(24)

Treating the 'P, as unknowns for which to solve, one can write system (24) as the
matrix equation
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[
1]1

Ar+A~
(25)

The determinant of the coefficient matrix is

by eqn (16). Thus eqn (25) has a unique solution, which by Cramer's rule is

'P _ -O.,-Ao)2+(M+l~) In (ldlo)
1- (ll-lo)2In (ldl o)

w _ (l, +lo)[(li-l~)-2Ajloln(ldlo)]
T2 - 2

2A.,lo(lj-lo) In (ldAo)

w _ -(li-A~)+2AlloIn ().dAo)
T3 - 2

AjAo(Al -Ao) In (Adlo)

Note that the coefficients 'Pi satisfy

'P, = 1+A.,AO'P 3

'1'2 = - HAl +Ao)'P 3 •

(26)

(27)

It is interesting that these parallel the relations among the coefficients 9 i of eqn (18) (see
eqn (12».

We have established that ifD admits the representation (22), the scalars 'Pi are given
byeqns (26). Conversely, if the 'P; are defined by eqns (26), then eqns (24) and therefore eqn
(22) holds. So the stretching tensor D can be written in terms of (In Ur and U in the form

with the 'P; uniquely given by eqns (26) as functions of the two distinct principal stretches.
Equation (1) was employed to write eqn (28) in terms ofU rather than V.

3.2. Three distinct principal stretches
The purpose of this subsection is to obtain an expression for D in terms of (In U)'

which is valid when there are three distinct principal stretches, i.e. when

The same basic method as was used in Subsection 3.1 will be used here.
We again employ the definition

P =R(ln U)'RT

and write eqn (7) as

(29)

(30)

P =~ID+~2(DV+VD)+~3(V2D+DV2)+IIl..VDV+~,(V2DV+VDV2)+<b6V2DV2
(31)

where the coefficients Ill; are given by eqns (8) and (9).
With respect to the principal axes of V the components of Pare
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Plj = D1j [4>1 +4>20'1 +A..i)+4>3(Al +A}) +4>4AIAj +4>sAIAjO'1 +Aj )+c1»6Al All (32)

where i,j range over 1,2,3. With the aid of eqns (8) and (9), a fairly involved calculation
shows that the term in brackets reduces to

Substituting eqn (33) into eqn (32), we obtain

{

I,

= :2AIA..i In (..tdA..i)
,2 ,2 '
"'1-"'1

i=j

i::/:-j

i=j

i::/:-j
(33)

(34)t

Recall that the principal stretches are all distinct here (see condition (29», so the coefficient
of Dlj does not vanish. Thus eqn (34) may be inverted:

i=j

i::/:-j
(35)

We next establish that unique coefficients Ai can be found such that D can be written in
terms ofP = R(ln U)°RTas

D =AtP+A2(vp+ PV)+A3(V2p+PV2)+ A4VPV+ As(V2PV + VPV2)+ A6V2pV 2
•

(36)

The AI will be scalar functions of the principal stretches.
With respect to the principal axes ofV the component form of eqn (36) is

The left-hand members ofeqns (35) and (37) are identical so, by setting the right-hand sides
equal to each other, we find that if such Ai exist they must satisfy

i=j

i::/:-j
(38)

As the indices range over 1, 2, 3 eqn (38) yields a system of six equations which can be
written in matrix form as

[M][A] = [N]

where [A] represents the column matrix with components AI

t This reau1t-wu eItabIiIhed by a cWl'erent method by Hill(]).

.. 23:12-1

(39)
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2A) 2),r ),f 2' 3 '4)'1 )'1

2).z 21.~ ).~ 2A~
, 4

.A.Z

2).3 2).~
, Z

2A~ Aj,A, 3
[M] =

)')+)"Z J. f+ A~ )'1),Z AIAZ()'I +AZ) AiA~

)') +)'3 )'f +A~ )'))'3 A)A3(AL +A3) ), f), ~

)'Z+A3 A~+A~ AZ)'3 AZ)'3(}'Z + A3) AZ'ZZAo 3

and

),i-A~
1

[N] = 2A IA z In (A)IAZ)

Af-A~

2AIA3ln (A I /A 3)

A~-A~

2AzA31n (Azi A3)

With RI representing the ith row of [M], we form a matrix [M] the rows of which are
Rio Rz-R lo R 3-R Io -2R4+R)+Rz, -2Rs+R I+R3and -2R6+Rz+R3

2A) 2M At 2AI A1

0 2().z-A,) 2(Ai-).n A.~-A.i 2()"i-An A1-A~

0 20'3-)'J) 2(},~-AD A~-A.i 2(A~-),n Aj - A1
[M] =

0 0 0 (I.)-Az)Z (AI-AZ)z(),,1 +),,2) (Ai -ADz (40)

0 0 0 (AI - A3)Z (A) - A3)2()"1+ A3) (A.i-Anz

0 0 0 (AZ - A3)2 (Az - A3)2(),! + )'3) (A~-AD2

The determinant of [M] is now easily calculated to be

det [M] :::: det [AI] :::::: 4(A,I-A,2)4(llz-A3)4(A3 -A1)4,

Condition (29) implies that det [M] =F 0, so eqn (39) possesses a unique solution for the A/.
Rather than solving eqn (39) directly for all six ofthe coefficients AI' we will conjecture

that the coefficients satisfy the relations

AI :::: 1-21/IAs-l lIl1\6

A 2 :::: /Il\s+!(I /I-1I1)A 6

1\4 = -2A 3 -21As-(/Z-I1)1\6

(41)

and solve for A3, As, A6• This conjecture is motivated by the observation that, in the case
of two distinct principal stretches, the coefficients 0 1 in eqn (18) and \f'i in eqn (28) satisfy
similar relations (see the remark following eqns (27». The relationships among the AI in
eqns (41) parallel conditions (8) for the coefficients cit/ of eqn (31).

With eqns (41), eqn (38)1 is automatically satisfied, and eqn (38h yields a system of
three equations which can be written in matrix form as
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[M'] = [A'ltN']
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(42)

and

A)(A'I-A2)2 ![Aj+A)(AI +A2)-AI A2](AI- A2)2]
A2(A) _A)2 HA~+A2(A,+A)-A,A3](AI-A)2
AI (A2 - A)2 ~[), ~ +).1 (A2 + A) - ),2).3]().2 - ),3)2

[A1 = [~:]

[N'] =

The determinant of [Mil is

A~-A~ -I
2AIA21n (AdA2)

M-Aj -I
2AIA31n (AdA)

A~-Aj -1
2A2A) In (A2/A)

i(A)-A2»)(A2- A))(A)-AI))

which by condition (29) does not vanish. Thus, eqn (42) has a unique solution, and
calculation by Cramer's rule gives the following result. Let

cPl = A.JAk

"'I = A..J+Ak

as before (see eqns (10», and define

IJi = In (A.J/Ak)

Vi = In (At/A]) In (Ak/AI)

A = (AI - A2)(A2 -A)(A) -AI)

r =2AIA2A)In (Aa/A2) In (A2IA) In (A)/AI)

then

(43)

(44)

By the uniqueness of the solution of eqn (39) we have established that the stretching
tensor D can be exptessed in terms of(In Uy and U in the form
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0= R{Aj(ln U)'+A2[U(ln U)'+(ln U)'U]+A j [U2(ln U)'+(ln U)'U2]+A4U(ln U)'U

+A s[U2(ln U)'U +UOn UrU 2]+A6U2(ln UrU 2}RT (45)

with the Ai uniquely given by eqns (41) and (44) as functions of the three distinct princi
pal stretches. Equation (1) was used to write the above expression in terms of U rather
than Y.

3.3. The stress T(O)

Equations (45), (28) and (13) provide formulas for 0 in terms of (In U)' in the case
where there are three, two and one distinct principal stretches, respectively. In this sub
section we will substitute these formulas for 0 into lIlT' D and find, upon comparison
with eqn (14), a formula for the stress conjugate to the logarithmic strain valid for each
case.

Suppose there are three distinct principal stretches. Using eqn (45) we calculate that

IllT'D = lllRT{A,T+A2(VT+TV)+A;(V2T+TV2)+A4VTV+ AS(y2TV + VTV2)

+A6ylTV2}R'(ln U)'. (46)

Suppose there are exactly two distinct principal stretches. Then eqn (28) holds, so

Suppose there is only one distinct principal stretch. Here eqn (13) applies, and

IIlT'D = lIlRTTR' (In U)'. (48)

On comparing each of eqns (46}-(48) with eqn (14), we obtain an expression for the
stress conjugate to In U which is valid for the case of three, two and one distinct principal
stretches, respectively. The results can be gathered as follows. The stress T(O) conjugate to
the logarithmic strain In U is given by

/lIRT[A jT+A 2(TY + YT)+A;(y2T+TV2)+A4VTY +AS(y2TY + VTy2)

+A6y 2Ty2]R, A\ ::f; A2 ::f; A3 ::f; Al

III RT['PtT+ 'P2(VT+TV) +'P;VTV]R, A. I -:1= A.2 = A,j (49)

I/lRTTR, A\ = A,2 =).;

where the Ai are given byeqns (41) and (44) and the 'Pi are displayed in eqns (26).
The results obtained so far are independent of material characteristics, and therefore

hold regardless of the constitutive equation. If, however, the material is isotropic elastic,
the rotated Cauchy stress R7l'R is an isotropic function ofU, so it has the form

with the a/ scalar valued functions ofthe principal invariants ofU. Here the rotated Cauchy
stress commutes with U, and use of eqn (45) with the Cayley-Hamilton theorem gives

T'D = {[A, +21IIAs+I lIIA611+[2A2 -211A s-(1 Il-IlI)A6lU
+ [2A; +A4 +2lAs+(12 -l1)A61U2}R1'K(U):R ' (In U)' (SO)

for three distinct principal stretches. By applying eqns (41) to the terms in square brackets,
we can reduce eqn (SO) to
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T'D =R7)((U)R ' (In U)' =RTTR ' (In U)'.

1655

A similar result holds for the case of two distinct principal stretches. For one distinct
principal stretch eqn (49)3 immediately givesT' D =R7'J'R' (In U)'. Thus we directly obtain
the weU·known result (see Ref. [I» that, for an isotropic elastic material, the stress conjugate
to logarithmic strain is the rotated Cauchy stress multiplied by III.

Finally, we return to the assertion that the logarithm ofthe left stretch has no conjugate
stress. The proof presented here is a variation of one by Ogden[7]. Since

In V = R(ln U)RT (51)

where R is the rotation, the material time derivative ofln Vis related to that ofIn U through

(52)

Suppose that In V has conjugate stress TIll). Then eqn (14) requires that

TIll), (In V)' = lilT' D = T(0) • (In U)'.

Incorporation ofeqns (51) and (52) yields

Recall that a conjugate pair must meet eqn (14) for aU motions; thus we may consider a
motion with R= 0 and R = A, where Ais an arbitrary proper orthogonal tensor. Then
eqn (53) implies

(54)

As Ais arbitrary, eqn (54) holds for any rotation, Le. for aU motions. Consequently the
right-hand member ofeqn (53) must vanish. Byeqn (54) this requirement may be rearranged
to

therefore

(55)

Formula (49) giving T(O) in terms of the Cauchy stress and V can be substituted into eqn
(55) to show that, because the principal axes of V, V2

, and In V coincide, eqn (55) is
equivalent to

TV=VT. (56)

Clearly, eqn (56) places restrictions on the constitutive equation which will be met only by
special materials. Thus the logarithm ofthe left stretch does not, in general, have a conjugate
stress.

However, in the case of an isotropic clastic material eqn (56) is met, and in this case
the stress conjugate to In V is lIlT (see the discussion surrounding eqn (50».
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